Skip to content

dq.number

number(*dims: int, layout: Layout | None = None) -> QArray | tuple[QArray, ...]

Returns the number operator of a bosonic mode, or a tuple of number operators for a multi-mode system.

For a single mode, it is defined by \(N = a^\dag a\), where \(a\) and \(a^\dag\) are the mode annihilation and creation operators, respectively. If multiple dimensions are provided \(\mathtt{dims}=(n_1,\dots,n_M)\), it returns a tuple with len(dims) operators \((N_1,\dots,N_M)\), where \(N_k\) is the number operator acting on the \(k\)-th subsystem within the composite Hilbert space of dimension \(n=\prod n_k\): $$ N_k = I_{n_1} \otimes\dots\otimes a_{n_k}^\dag a_{n_k} \otimes\dots\otimes I_{n_M}. $$

Parameters

  • *dims –

    Hilbert space dimension of each mode.

  • layout –

    Matrix layout (dq.dense, dq.dia or None).

Returns

(qarray or tuple of qarrays, each of shape (n, n)) Number operator(s), with n = prod(dims).

Examples

Single-mode \(a^\dag a\):

>>> dq.number(4)
QArray: shape=(4, 4), dims=(4,), dtype=complex64, layout=dia, ndiags=1
[[  â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…    1.+0.j   â‹…      â‹…   ]
 [  â‹…      â‹…    2.+0.j   â‹…   ]
 [  â‹…      â‹…      â‹…    3.+0.j]]

Multi-mode \(a^\dag a \otimes I_3\) and \(I_2\otimes b^\dag b\):

>>> na, nb = dq.number(2, 3)
>>> na
QArray: shape=(6, 6), dims=(2, 3), dtype=complex64, layout=dia, ndiags=1
[[  â‹…      â‹…      â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…    1.+0.j   â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…    1.+0.j   â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…      â‹…    1.+0.j]]
>>> nb
QArray: shape=(6, 6), dims=(2, 3), dtype=complex64, layout=dia, ndiags=1
[[  â‹…      â‹…      â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…    1.+0.j   â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…    2.+0.j   â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…      â‹…      â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…    1.+0.j   â‹…   ]
 [  â‹…      â‹…      â‹…      â‹…      â‹…    2.+0.j]]