dq.sdissipator
sdissipator(L: ArrayLike) -> Array
Returns the Lindblad dissipation superoperator (in matrix form).
The dissipation superoperator \(\mathcal{D}[L]\) is defined by: $$ \mathcal{D}[L] (\rho) = L\rho L^\dag - \frac{1}{2}L^\dag L \rho - \frac{1}{2}\rho L^\dag L. $$
The vectorized form of this superoperator is: $$ L^* \otimes L - \frac{1}{2} (I_n \otimes L^\dag L) - \frac{1}{2} (L^\mathrm{T} L^* \otimes I_n). $$
Parameters
-
L
(array_like of shape (..., n, n))
–
Jump operator.
Returns
(array of shape (..., n^2, n^2)) Dissipation superoperator.
See also
dq.dissipator()
: applies the dissipation superoperator to a state using only \(n\times n\) matrix multiplications.