dq.slindbladian
slindbladian(H: ArrayLike, jump_ops: ArrayLike) -> Array
Returns the Lindbladian superoperator (in matrix form).
The Lindbladian superoperator \(\mathcal{L}\) is defined by: $$ \mathcal{L} (\rho) = -i[H,\rho] + \sum_{k=1}^N \mathcal{D}[L_k] (\rho), $$
where \(H\) is the system Hamiltonian, \(\{L_k\}\) is a set of \(N\) jump operators
(arbitrary operators) and \(\mathcal{D}[L]\) is the Lindblad dissipation superoperator
(see dq.sdissipator()
).
The vectorized form of this superoperator is: $$ -i (I_n \otimes H) + i (H^\mathrm{T} \otimes I_n) + \sum_{k=1}^N \left( L_k^* \otimes L_k - \frac{1}{2} (I_n \otimes L_k^\dag L_k) - \frac{1}{2} (L_k^\mathrm{T} L_k^* \otimes I_n) \right). $$
Note
This superoperator is also sometimes called Liouvillian.
Parameters
-
H
(array_like of shape (..., n, n))
–
Hamiltonian.
-
jump_ops
(array_like of shape (N, ..., n, n))
–
Sequence of jump operators.
Returns
(array of shape (..., n^2, n^2)) Lindbladian superoperator.
See also
dq.lindbladian()
: applies the Lindbladian superoperator to a state using only \(n\times n\) matrix multiplications.